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The method of small perturbations has been used to study the hydro-
dynamical stability of flow of a structurally viscous fluid in the bound-
ary layer on a flat plate.

Following [1], we shall understand a structurally
viscous fluid to be an incompressible fluid, obeying
Newton's law, with a variable dynamic viscosity:
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In our case the value of the viscosity is determined
by the components of the rate of deformation tensor.

. The dynamical viscosity can be a function only of the
invariants of the tensor Vjj. If we equate to zero the
linear invariant we have the continuity equation of an
incompressible fluid. For plane-parallel flow, the
third invariant also is equal to zero. It is, therefore,
natural to suppose that the dynamic viscosity u de-
pends only on the quadratic invariant of the rate of . .
deformation tensor I, taken with the opposite sign. In
conformity with [1], we shall represent ¢ by the series
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In [1], for the case of a plane-parallel flow, the
fluidity of a structurally viscous fluid ¢ was repre-
sented in the form of a series of powers of the shear
stress 7. We see that this relation may be obtained by
substituting Eq. (2) into the law of viscous friction (1),
and converting the series, which immediately gives
the following expressions for the coefficients:

o =1/gy, py=—8/¢g3, ... {(3)

Here, of course, it is assumed that ¢y =0, i. e.,
a fluid with a non-zero limit of fluidity (for example,
Bingham fluids) is excluded from examination. As
was shown in [1], we may add a whole series of high-
polymer, colloid, and coarsely dispersed fluids to the
class of structurally viscous media, for which the vis-
cosity at a given pressure and temperature is a single-
valued function of the shear stress, where, in the
range of shear stress of practical importance, we may
limit ourselves to the first two terms of the expansion
in describing the behavior of the fluid.

We shall write the equations of motion and conti-
nuity in the form
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Substituting expressions (1) and (2) into Eq. (4),
allowing for the continuity equation (5), we obtain
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We shall introduce the dimensionless variables
E=u/l, o =wlw,, 4 =wll, n - plows. (7

The equation of motion takes the form
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We shall impose a small perturbation on the basic
steady flow. Assuming that the velocity and pressure
of the main flow satisfy the equations of motion and
continuity, we find, by neglecting terms of high order
of small quantities
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We shall make an approximate calculation of the
basic flow in the boundary layer on a plane-parailel
plate. It has one velocity component w on the axis
parallel to the plate, and depends only on the coordi-
nate £. We shall restrict examination to 2-dimensional
perturbations, which enables us to introduce a stream
function of the disturbed motion ¢. Eliminating the
pressure from Eq. (10), we obtain, allowing for the
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above assumptions,
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Equation (12) is linear with respect to the stream
function . Its coefficient does not depend on 77 and 9.
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Dependence of the numbers Regk (1), Reg

(2), Rey (3) and the coordinate £ (4) on

the parameter ®x. The dashed line is the

value of the Reynolds number, correspond-

ing to loss of stability in the flow of a New-

tonian fluid in the boundary layer on a
plate.

1t may therefore have particular solutions of the form
Y=o0(g)expialn—c?d). (13)

Substituting expression (13) into Eq. (12), we find,
following simple transformations, ‘
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When @+ — « (Newtonian fluid) Eq. (14) goes over
to the well-known Orr-Sommerfeld equation.

The theory of stability of a Newtonian fluid indicates
that the viscosity has a very strong influence on the
perturbed motion near the point £ = £,, where w=c¢
[2]. Therefore we shall study the function ¢ in the im-
mediate vicinity of this point,

We shall represent the velocity of the main flow and
its derivatives in the form of series of powers of € —
~ £ ), and restrict ourselves to the first terms of the
expansions:
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We shall introduce the new variable

C=(E—%)e, ‘ (16)
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Comparing Eqs. (14)—(17), we obtain
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We shall seek a solution of this equation in the form of
the asymptotic expansion

Y = Yo + Yi/& + vy fef 4 ... (19)

Substituting the series (19) into Eq. (18), we obtain
equations for vy, vy ¥a2,.... Since the expressionfor
vy differs from the analogous equation in the case of
flow of a Newtonian fluid only in that the Reynolds num-
ber is replaced by the number Rey, to determine the
coordinate £ and the critical value of Renk, we may
use the approximate estimates proposed by Lin {2],
which in our notation, after a number of elementary
transformations, have the form
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The arguments presented above are valid for plane-
parallel flows. We shall examine the specific case of
motion of a structurally viscous fluid along a flat plate
and shall use an expression for the velocity of the
basic flow [1], which, after simple transformations,
may be wriften in the form
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The system (20)—(22) was solved by Newton's method

on an electronic M-20 computer at the Computer Cen-

ter, Siberian Division, AS USSR. Calculations were also
made of the critical values of the numbers Rey and

S
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Re, = p@, lw, » (23)
Rey, = Re, 0, - (24)

Results of the calculations are shown in the figure.
It may be seen that the nature of the variation of the
numbers Rek, Rek, Reik as a function of the param-
eter ®, is the same.
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Intensification of the non-Newtonian properties (re~
duction of the parameter ®,) lowers the stability of the
flow of a structurally viscous fluid in the boundary
layer on a plate.

NOTATION

7ji denotes the components of the stress deviator; p is
dynamie viscosity; V;; denotes the components of the
rate of deformation deviator; I is the quadratic invari-
ant of the rate of deformation tensor, taken with the
reverse sign; wi denotes the components of the velocity
vector; {j denotes the coordinates of a rectangular sys-
tem of coordinates; ¢q isthe fluidityfor zero shear; ® is
the coefficient of structural instability; p is density;
t is time; wy is the characteristic velocity (in the case
of longitudinal flow over aflat plate, w, isthe velocity
of the external flow); [ is the characteristic dimension
{in the case of longitudinal flow over a flat plate, I is
the boundary layer thickness); wj is the dimensionless
component of the velocity vector of the main flow; T is
the dimensionless pressure of the main flow; ) is the
dimensionless component of the velocity vector of the
disturbed flow; 7°is the fluctuating component of the

dimensionless pressure; 7n is the coordinate axis paral-

lel to the plate; & is the coordinate axis perpendicular
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to the plate; w is the velocity of the main flow in the
boundary layer; ¢ is the stream function of the dis-
turbed motion; ¢ is the amplitude of a small perturba-
tion; « is the wave number; c is a complex quantity
characterizing the rate of propagation of the oscilla-
tion and the degree of its amplification (or damping);
¢c is the dimensionless coordinate of the point at which
w = C; w(cn) is the derivative of the velocity of the main
flow of order n at the point & = £¢; wy isthe firstderiv-
ative of the main flow at £ = 0; Rep is the reduced
Reynolds number; ¢¢ is the true fluidity at the point
£=tg h= (8868 — &/on*). The subscript k corre-
sponds to the point of loss of stability.
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